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Let V0 be a real-valued function on [0,.) and V ¥ L1([0, R]) for all R > 0 so
that H(V0)=− d

2

dx2
+V0 in L2([0,.)) with u(0)=0 boundary conditions has

discrete spectrum bounded from below. LetM(V0) be the set of V so that H(V)
and H(V0) have the same spectrum. We prove thatM(V0) is connected.

KEY WORDS: Isospectral sets of potentials; half-line Schrödinger operators;
inverse problems.

The limitation of our knowledge of inverse spectral theory for Schrödinger
operators HR(V)=− d

2

dx2
+V in L2(R) is shown by the following open ques-

tion: Let MR(x2) denote the set of all V’s with s(HR(V))={1, 3, 5,...}, the
spectrum of the harmonic oscillator − d2

dx2
+x2 in L2(R). Is MR(x2) con-

nected? One can ask the same question for restricted sets of V’s, say
requiring that V is Ck(R) for some k ¥N or C.(R). The question remains
open for sets so large that they include the translates of V .

If one demands that V be close to x2 in a strong sense, there are some
results that go back to McKean–Trubowitz (9) (see also Levitan (7)), culmi-
nating in the recent beautiful paper of Chelkak, Kargaev, and Korotyaev (1)

who require V(x)=x2+q(x) with > [|qŒ(x)|2+x2 |q2(x)|2] dx <. (by a
Sobolev estimate such q’s have |q(x)|Q 0 as |x|Q.). Their analysis
implies the set of V ¥MR(x2) obeying this estimate is connected.



The purpose of this note is to make what turns out to be an elemen-
tary observation: The corresponding problem for the half-line is easy!
Suppose V is real-valued and in L1([0, R]) for all R > 0. We consider
H(V)=− d

2

dx2
+V in L2([0,.)) with u(0)=0 (i.e., Dirichlet) boundary

conditions. If V is merely in L1([0, R]) for all R > 0, we will use that to
define a topology on M(V). If V is in Ck([0,.)) for some k ¥N, we will
use the norm on Ck([0, R]) for all R > 0 to define the topology on M(V).
Here is our result:

Theorem 1. Let V0, V1 be real-valued and in L1([0, R]) for all R > 0
so that H(Va) is bounded from below (which means that − d2

dx2
+Va is in

the limit point case at ., cf. ref. 5) and each has discrete spectrum
spec(H(Va))={Ej(Va)}j ¥N, a=0, 1.

Suppose

spec(H(V0))=spec(H(V1)). (1)

Then there exists {Vt}0 [ t [ 1, with Vt real-valued and in L1([0, R]) for all
R > 0, interpolating V0 and V1 so that

spec(H(Vt))=spec(H(V0)), t ¥ [0, 1]

and tQ Vt |[0, R] is continuous in L1([0, R]) for all R > 0. Moreover,
(i) tQ Vt |[0, R] is real analytic in L1([0, R]) for all R > 0.
(ii) If V0 and V1 are Ck([0,.)) for some k ¥N, then Vt is Ck([0,.))

and tQ Vt |[0, R] is real analytic in Ck([0, R])) for all R > 0.

We recall that all eigenvalues {Ej(V)}j ¥N of the Dirichlet operator
H(V) in L2([0,.)) are simple.

The proof exploits the A-function studied by us in refs. 4 and 13.
A can be defined in terms of the spectral measure defined in the standard
way (see, e.g., ref. 8) so that the Weyl m-function satisfies

m(z)=c+F
R

5 1
l−z

−
l

1+l2
6 dr(l), z ¥ C0 spec(H(V)). (2)

We let dr0 denote the spectral measure for the case V=0. It is well-known,
since

m(z, V=0)=i`z, (3)

that

dr0(E)=
1
p
`E q[0,.)(E) dE. (4)
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A is then defined by

A(a)=−2 F
.

−.
l−

1
2 sin(2a`l ) [dr(l)−dr0(l)], (5)

where the integral is intended in the distributional sense on (−.,.) (so, a
priori, A is only a distribution, not a function). Of course, A=0 for V=0.

One can also define a distribution A by (5) with r0 dropped (cf., ref. 4)
but then this distribution is only L1loc away from 0 and has a dŒ singularity
at 0. We will not use this approach in this note.

The fact on which Theorem 1 depends is the following:

Theorem 2. dr is the spectral measure of an H(V) with V ¥

L1([0, R]) for all R > 0, V real-valued, if and only if A ¥ L1loc(R).
V ¥ Ck([0,.)) for some k ¥N if and only if A ¥ Ck(R). If drt is a family
so that At |[−R, R] is real analytic in t in L1([−R, R]) (resp. Ck([−R, R]))
for all R > 0, then tQ Vt is real analytic in t in L1([0, R]) (resp.
Ck([0, R])) for all R > 0.

This theorem combines results from Gesztesy–Simon (4) and Simon (13)

(who show V is Ck([0,.)) if and only if A is, once one knows V exists)
and work of Remling (10) or a suitable version of the Gel’fand–Levitan
theory, (6) Chap. 2, ref. 8, Section 2.3, to get the existence part of
Theorem 2.

Once one has Theorem 2, Theorem 1 is immediate.

Proof of Theorem 1. Let {Ej}j ¥N be the common spectrum of V0
and V1 so

dra(E)=C
j ¥N

aj, a d(E−Ej), a=1, 2. (6)

Define

drt(E)=C
j ¥N

[taj, 1+(1−t) aj, 0] d(E−Ej), t ¥ [0, 1].

The associated A-functions satisfy

At=tA1+(1−t) A0, t ¥ [0, 1]. (7)

Clearly, if A0, A1 are L
1
loc(R), so is At, and if A0, A1 are C

k(R), so are At.
Thus, drt is the spectral measure of a potential Vt that, by Theorem 2, has
the claimed properties. L
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Remarks. 1. The Ck result extends to C. and one can also extend it
to real analyticity.

2. Because V on [0, x0] only depends on A on [0, x0] (see refs. 4
and 13), if V0 and V1 are Ck on [0, x0], so is each Vt.

The key to our proof is the fact that, while not all measures
; j ¥N aj d(E−Ej) are spectral measures (the fact that the A-transform of
r−r0 has no singularity at a=0, which means the r-term alone has a spe-
cific singularity that places restrictions on the aj), those that are form a
convex, hence, connected set.

The difficulty of extending this to potentials on R is that there is no
known way to describe when a candidate spectral measure is, in fact, the
spectral measure for a potential on R. Typically, one reduces the whole-line
problem on R to two half-line problems on (−., x0) and (x0,.) for some
fixed x0 ¥ R (cf. ref. 6, Chap. 7, and refs. 11 and 12) but, in general, loses
control over the potential at the point x0 (in the sense that generally the
potential V will be discontinuous at x=x0). To determine the potential,
the spectral measure is a 2×2 matrix in this case, (2) Section 9.5, ref. 3,
Section 10.3.5, and because of restrictions on this matrix, convex combina-
tions of the matrix measures coming from a potential will not come from a
potential, so our method cannot extend.

We, of course, believe that for the whole-line case, there is also a result
on connectedness of the spectral manifold for a potential like V(x)=x2.
But we wonder about a case like

V(x)=ln(|x|+1)+exp(x) (8)

with very different asymptotics if xQ. and xQ −.. V(x) and V(−x) are
obviously isospectral, but we wonder if there is a path between them in the
isospectral manifold. It might be that the correct conjecture is that for any
V,MR(V) consists of either one or two connected components.

We hope that this note will stimulate more work on this problem.
We close by thanking Elliott Lieb for his many years of research

results, insights, and service to the mathematics and physics communities,
and by expressing the hope that he has enjoyed this birthday bouquet.
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